Journal of Chromatography, 1E3 (1977)541-551
Bionedical Appäcations

- Elsevier Scientific Publishing Company, Amsterciam - Printed in The Netherlands

CHROMEIO. 068
A NON-ENZYMIC PROCEDURE FOR THE QUANTETATIVE ANALYSIS OF (3-METHOXY-4-SULPHOXYPHENYL)ETHYEENE GEYCOL (MEPPG SUEPEATE) EN HUMAN URINE USING STABEE ISOTOPE DILUTION AND GAS CHROMATOCRAPHY-MASS SPECTROMETRY

STEPHEN MURRAY, THOMAS A. BAILEIE GEd DONAED S. DAVIES
Erepartment of Clinical Pinarmacology, Royal Postgraduate Mfedica! School, Ducane Road, London (Great Britain)
(Received January 17th, 1977)

SUKGMARY

A method is described for the quantitative analysis of (3-methoxy-4-sulphoxyphenyi)ethylene glyeol (MHPG sulphate) in human urine, based on selected ion monitoring gas chromatography mass spectrometry and using a specifically deuterium-labelled analogue of MEFPG sulphate as intemal standard. The procedure involves extraction of the urine sampie an Amberite KAD-2, followed by isolation of MHPG sulphate by column chromatography on Sephader EFF-20. Cleavage of the sulphate conjugate and formation of the MHPG tris(trifunoroscetate) derivative are carried out in a onestep reaction, without recourse to enzymic bydrolyais.

ENTRODUCTION

Studies on the metabolic fate of noradrenaline in man have shown that (3-methoxy-f-hydroxyphenyllethylene glycol (MEPG) is a major metabolite $[1,2]$ and that this compound is excreted in urine mainly as its sulphate and glucuronide conjugates $\{1.31$. Whereas MEPG appears to be conjugated mainly with glucuronic acid in peripheral tissues, it has been suggested that sulphoconjugation of this compound talses place predominantly in the brain [4]. If thia is the case, measurement of urinary MHFG sulphate should provide a convenient, non-invasive technique for the assessment of central noradrenengic function in man [4].

A number of methods have been reported for the analysis of free and conjugated MEPG in urine, based on spectrophotometry [5-8], gas-liquid chroratography $[4,9-15]$ and, more recently, on gas chromatography-mass spectrometry (GC-MS) [26-19]. Of these techniques, the latter combines highest specificity and sensitivity and pexmits the use of stable isotope-labelled analo-
gues of the compounds of interast as internal standaris [20].
MHPG sulphate may be hydrolysed by the action of acid [16], but since free MHPG is itself unstable under these conditions [5, 7,91, methods for the measurement of the sulphate conjugate zely on the "selective" action of suphatase enzymes; unconjugated MHPG in urine is determined before and after hydrolysis and the levels of MHPG sulphate are obtained by difference. Although enzymic hydrolysis is a powernil technique for the qualitative study of conjugated metabolites, the use of enzymes for quantitative determinations on a routine basis suffers from a number of disadvantages. First, most sulphatase preparations contain low, and often variable, amounts of β-glucuronidase and, if steps are not taken to selectively inhibit β-giucuronidase activity [21], erroneously high values for MHPG sulphate will be obtained. This problem may, however, be overcome if MHPG sulphate is separated from the corresponding glucuronide prior to enzymic hydrolysic. Chromatographic systems based on thin-layer [22], paper [3] and ion-exchange chromatography [22] have been described for the separation of MFiPG and its conjugates, but these have not been adopted for routine use.

A second disadvantage associated with the use of enzymic hydrolysis is that hydrolytic activity may be diminished by the presence in urine samples of endogenous inhibitors of enzyme action [3] or by the use of a large excess of the enzyme in the incubation [4]. Problems of this nature can be orercome satisfactorily only theough the use of an appropriate, sulpho-conjugated internal standard. Finally, certain enzyme preparations have been shown to contain traces of MHPG itself and of other interfering substances [23], thus necessitating the use of a "blank" incubation with each bateh.

In view of che above disadivantages, we have investigates altemative approaches to the analysis of MEPFG sulphate in human urine. In the present communication, we report the development of an improved stable isotope dilution assay for urinary MHPG sulphate, of which a specifically deuterium-labelled analogue has been synthesized for use as intemal standard. Following extraction of MHPG and its conjugates from urine, MEPG sulphate is isolated by liquid-gel chromatography and is converted to a derivative suitable for GCMS analysis by a novel procedure which does not entail hydrolysis by an aryl sulphatase.

EXPERLMENTAL

General

Amberlite XAD-2 (BDH, Poole, Great Britain) wes weshed exhaustively with acid, alksii, water and solvents [24f. The resin was stored in water and veas used as described by Bradlow [25]. Sephadex LH-20 (Phamacia, Uppala, Sweden) was washed in turn with 5% acetic acid in ethanol, water, ethanol, chloroform and finally methanol. Trifluoroacetic anhydride was purchased from Sigma (London, Great Britain), as were aryl sulphatase (Type H-1, containing 18,600 units/g sulphatase and appros. 300,000 Fishman units/e 1 -giucuronidase) and β-glucuronidase (Type II, approx. 40,000 units/g). All solvents employed in the analytical procedure were of analytical grade and were redistilled betore use. Ethyl acetate and dimethylfommaide weze dried over calcium hydride and sedistilled.

Acetovanitione, benzyl chloride and [O-2H]ethanol were purchased from Koch-Eight Labs. (Colnbrook, Great Britain). Sodium borodeuteride and sodium deutero-axide in deuterium oxide (40\%,w/w) were obtained from Merck Sharp and Dohme (Montreal, Canada) and dicyclohexylcarbodimide from BDH. A sample of the potassium salt of MHPG sulphate was kindly donated by Hofimann-Ea Roche (Basie. Switzeriand) while further quantities were purchased from Eluka (Buchs, Switzeriand). The piperazine salt of unconjugated $\mathrm{MH} H \mathrm{PG}$ was obtained from Sigma. Thin-layer chromatography (TEC) was carried out using glass plates ($5 \times 20 \mathrm{~cm}$), precoated with $0.25-\mathrm{mm}$ layers of silica gel $\mathrm{G}_{\mathrm{F} 254}$ (Mezck, Darmstadt, G.F.R.).

Infrared (IR) spectrometry. IR spectrometry was carried out on Nujol mulls using a Perkin-Elmer 157 G instrument.

Nuclear magretic resonance (NMR) spectrometry. NRR was periomed at 60 MHz on a Hitachi Perkin-Elmer R-24 instrument. Spectra were obtained on solutions in deuterochloroform, except where otherwise stated.

Gas cfiromatography-mass spectrometry. A Finnigan Model 3200 instrument was used, equipped with a $5 \mathrm{ft} . \times 2 \mathrm{~mm}$ E.D. glass column packed with 3% OV-17 on Gas-Chrom Q ($100-120$ mesh), and operated at 115° with helium ($30 \mathrm{mi} / \mathrm{min}$) as carrier gas. Under these conditions, the retention time of the MEPPG tris(trifiuoroacetate)(tris-TFA) derivative was approximately 5 min . The mass spectrometer was operated in the electron impact mode with an electron energy of 25 eV , emission current of $400 \mu \mathrm{~A}$ and continuous dynode electron multiplier voltage of 1.3 kV . The pre-amp range was $10^{-7} \mathrm{~A} \cdot \mathrm{~V}^{-1}$ for recording of reference spectra and $10^{-s} \mathrm{~A} \cdot \mathrm{~V}^{-\mathrm{s}}$ for analysis of urinary extracts. Data acquisition and reduction was performed by a Finnigan Model 6000 interactive data system, using zevision H software.

Synthesis

3-Methoxy-4-benzyloxy-w-bromoacetophenone (IFI). This compound was prepared from acetovanillone ($1 ; 10.0 \mathrm{~g}, 60.2$ mmole) by the method of Hegedüs [26]. The crude product was recrystallised from ethanol to give IME a fine crystals (yield $=8.0 \mathrm{~g}, 40 \%$). TEC (chloroform): single spot, $R_{F}=0.57$. MS: m/e $334\left(M^{+}\right), 255,241,214$ and 91 (base peak). IR: 3065 (w), 1760 (s), 1580 (s), 1510 (s), 1260 (s) and $1155 \mathrm{~cm}^{-1}$ (s). NMR: 3.93 ($3 \mathrm{H}, \mathrm{s}$), 4.36 (2 FH , s), $5.23(2 \mathrm{H}, \mathrm{s}), 7.15(3 \mathrm{H}, \mathrm{m})$ and $7.36 \delta(5 \mathrm{H}$, broad s$)$.

1-(3-Methoxy-4-benzyloxyphenyl) [1,2,2-2 H_{3}] ethylene glycol (V). To a solution of the bromide III ($7.5 \mathrm{~g}, 22.4$ mmole) in [$\mathrm{O}^{2} \mathrm{H}$ lethanol (100 g) was added anhydrous potassium acetate (4.39 g) and the mixture was heated under reflux for 19 h . The reaction product vas allawed to cool to room temperature, when sodium borodeuteride ($1 \mathrm{~g}, 23.8 \mathrm{mmole}$) was added in portions with stiming. After 3 hat room temperature, the mixture was treated with a solution of sodium deutero-oxide in deuterium oxide ($40 \% \mathrm{~W} / \mathrm{W} ; 5 \mathrm{ml}$), followed by a further 10 ml of deuterium oxide and allowed to equilibrate for 1 h . The reaction mixture was then poured into water (200 ml) and extracted into diethyl ether (three $150-\mathrm{ml}$ portions). The combined ether extracts were washed with water (fwo $200-\mathrm{ml}$ portions), dried (sodium sulphate), filtered and evaporated under reduced pressure to give V as an oil. Crystallisation from benzene-.
hexane afforded 4.94 g of product, containing benzene of crystallisation [26]. TEC (ethyl acetate): single spot, $R_{F}=0.29$. MS: $m / e 277\left(M^{+}\right), 259,244$ and 91 (base peak). NMR: 2.8 (2 II , very broad s, -OH), 3.97 ($3 \mathrm{H}, \mathrm{s}$), 5.27 (2 FI , s), $7.0-7.88$ ($14 \mathrm{~F}, \mathrm{~m}$, includes one molecule of benzene of crystallisation).

1-(3-Mfethoxy-4-benzyloxyphenyl) [1,2,2-2 H_{3}] ethylene glycol diacetate (VI). A portion of the labelled glycol $V(150 \mathrm{mg})$ was acetylated in acetic an-hydride-pyridine ($4: 1, y / v ; 2.5 \mathrm{mi}$) for 16 h at room temperature. The mixtare was then poured into ice-water (20 ml) and the product was extracted with diethyl ether (twice 15 ml). The combined ether extracts were washed with 1 N hydrochloric acid (twice 10 ml), saturated sodium hydrogen carbonate solution (20 ml), Gried (sodium sulphate) and filtered. Evaporation of the solvent gave VI as a pale yellow oil (yield: 170 mg). TLC (chloroform): single spot with $R_{F}=$ 0.48. MS: $m / e 361$ (M^{+}), 300, 258, 211, 209, 159, 157, and 91 (base peak). NMR: 2.03 ($3 \mathrm{H}, \mathrm{s}$), 2.08 (3H, s), 3.87 ($3 \mathrm{H}, \mathrm{s}$), 5.12 ($2 \mathrm{H}, \mathrm{s}$), 6.82 (3H, broad s) and 7.338 (5 H , broad s).

1-(3-Methoxy-f-hydroxyphenyl) $\left[1,2,2 \cdot{ }^{2} H_{3}\right]$ ethylere glycol discetate (VII). The diacetate VI ($170 \mathrm{mg}, 0.475 \mathrm{mmole}$) was dissolved in methanol (30 ml) and 5% palladium on charcoal (100 mg) was added. This mixture was hydrogenated for 2.5 in in a Parr shaker, using a hydrogen pressure of 30 p.s.i. The resulting mixture was filtered and evaporated under reduced pressure to yield VII as a solourless oil. TLC (chloroform): single spot, $R_{F}=0.30$. MS: m/e 271 (M^{+}), 210, 196, 168, 154, 94 and 43 (base peak). NMR: 1.39 (3H, s), 2.03

1-(3-Methoxy-4-sulphoxyphenyl) [1,2,2-2 $\left.\boldsymbol{F}_{3}\right]$ etkylene glycol potassium salt (IX). The product from the above reaction was dissolved in anhydrous dimethylformamide (5 ml), dicyclohexylcarbodiimide (700 mg) was added and the resulting solution was cooled to 0°. To this solution was added 1.5 ml of a mixture of concentrated sulphuric acid (0.45 ml) and anhydrous dimethylformamide (7.7 ml), which had previously been cooled to 0°. The reaction was allowed to proceed for 2 h at 0° and was quenched by the addition of 75% aqueous ethanal (20 ml). The pH of the mixture was adjusted to 7.5 by the addition of a few drops of $2 N$ potassium hydroxide solution. The mixture was centrifuged and the supematant kas removed. The residue was extracteid with 75% aqueous ethanol (thrice 20 ml), and the combined supematant and extracts were taken to dryness in vacuo.

The residue was redissolved in 5 ml chloroform-methsnol (1:1, $\mathbf{y} / \mathrm{v}, 0.01$ Mf with respect to potassium chlaride) and applied to a column of Sephadex LH-20 (20 g), packed in and eluted with the same solvent system. The einuent between 210 and 270 ml was collected and evaporated to dryness to give VIII as a white solid (103 mg), which wes hydrolysed for 3 h at 80° in 1 M aqueous potassium hydraxide (3 ml). The resulting solution was neutralized by the caseful addition of hydrochloric acid and was lyophilized to yield 306 mg of solid material, of which approsimately 10% by weight corresponded to the labelled sulphate conjugate EX. NMR (${ }^{2} \mathrm{H}_{2} \mathrm{O}$): 3.90 ($3 \mathrm{KF}_{4}$ s) and 7.206 ($3 \mathrm{~K}, \mathrm{~m}$).

Treatment of a portion of the above product vith trifuorascetic an-hydride-ethyl acetate ($1: 1, v / \mathrm{v}$) for 90 min at room temperatare and subsequent GC-MS analysis showed the formation of a single derivative mose
mass spectrum was almost identical to that previously published for the trisTFA derivative of [${ }^{3} \mathrm{H}_{3}$ IMHPG [18]. Deuterium content of this derivative, as measured from the molecular ion cluster, was found to be as follows (atoms $\%$ excess) : $0.03 \%{ }^{3} \mathrm{H}_{0}, 0.37 \%{ }^{2} \mathrm{H}_{\mathrm{E}}, 10.60 \%{ }^{2} \mathrm{H}_{2}$ and $88.99 \%{ }^{2} \mathrm{H}_{3}$.

The deuterated sulphate IX was stored at -20° and stock solutions in distilled water (concentration approx. $250 \mu \mathrm{~g} / \mathrm{ml}$) were prepared as required. To aliquots of these solutions was added a fixed amount of uniabelled MHPG sulphate to serve as internal standard and the mixtures were derivatised with trifiuoroacetic anhydride in ethyl acetate. The resulting MHPG tris-TFA derivatives were analysed by selected ion monitoring GC-MS, when the ratios of peak heights in the recordings for $m / e 358$ and 360 were used to calculate the concentration of $\left\{^{2} \mathrm{H}_{3}\right]-\mathrm{MHPG}$ sulphate in the original stock solutions.

Urine samples

Twenty-four-hour wrine samples were collected from healthy laboratory personnel who were not receiving any medication, and were stored at -20° until analysed.

Analytical procedures

Urinary $A F F P G$ sulphate. To an aliquot (5 ml) of a $24-\mathrm{h}$ urine collection is added [${ }^{2} \mathrm{H}_{3} \mathrm{MHEPG}$ sulphate (approx. $25 \mu \mathrm{~g}$) in distilled water (100μ). The sample is mixed thoroughly on a Vortex mixer and is passed through a column ($10 \times 2 \mathrm{~cm}$) of Amberite XAD-2. The column is washed in tum with water (10 ml) and hexane (10 ml) and the washings are discarded. MHPG sulphate is then eluted with methanol (30 ml) and the solvent is evaporated under reduced pressure. The residue is taken up in 2 ml chloroform-methanol ($1: 1, \mathrm{v} / \mathrm{v}$, 0.01 If with respect to sodium chloride) and is applied to a coiumn ($28 \times 1 \mathrm{~cm}$) of Sephader LH-20 (5 g), prepared in and eluted with the same soivent system. The fraction corresponding to $70-100 \mathrm{ml}$ of effluent is taken to dryness under reduced pressure and is transferred with methanol (two $0.5-\mathrm{ml}$ portions) to a screw-capped Reactivial ${ }^{*}$. The salvent is evaporated under a stream of nitrogen and the residue is Eurther diried for 2 h in a vacuum desiccator in the presence of phosphorous pentoxide.

Anhydrous ethyl acetate (250μ) and tifluoroacetic anhydride ($350 \mu \mathrm{l}$) are added to the sample and the vial is securely capped and shaken for 2 h at room temperature. Residual sodium chloride frome the LH-20 cinromatography solvent system is removed by brief centrifugation and the clear supematant is transferred to a second Reactivial and evaparated to dryness under a stresm of dry nitrogen. The residue is taken up in anhydrous ethyl acetate-trifluoroacetic anhydride ($95: 5, v / v, 20 \mu)$ and aliquots (2μ) are injected into the GC-MS instrument, which is focused to monitor the ions at mie 358 and 360.

The concentration of endogenous MHPG sulphate in the urine sample is determined by reference to a standard curve of peak height ratio (m/e 358: 360) versus quantity of unlabelled ÉsHPG sulphate. Standard curces, which are prepared with each bstch of samples, are linear over the range of MHPG sulphate concentrations encountered in normal subjects and are constructed from known fixixtures of the reference (unisbelled) and deuterated conjugate.

Free and "total" $A E H P G$ in urine. Measurement of free and "total" urinary MHPG is also carried out by GC-MS using a modification [27] of the procedure described by Bertilsson [28] for cerebrospinal fluid samples. $\left.\mathrm{E}^{2} \mathrm{H}_{2}\right] \mathrm{MHPG}$ (prepared by reduction of vanillylmandelic acid with lithium aluminium deuteride) serves as the internal standard in both assays. The volume of urine required for estimation of free MHPG is 200μ, while that for "total" MHPG is 10μ. Cleavage of MHPG conjugates is carried out using Sigma Type H-1 enzyme, a preparation containing both aryl sulphatase and β-glucuronidase activity.

RESUETS ANU DISCUSSION

Synthesis of ${ }^{2}{ }^{2} F_{3}$ IMHPG sulphate (Flg. 1)
Preparation of the internal standard, $\left[{ }^{2} \mathrm{H}_{3}\right] \mathrm{MHPG}$ sulphate, was carried out by modification of a published procedure for the synthesis of the corresponding unlabelled conjugate [26]. Acetovanillone (I) was converted to the bromo derivative III, which was then heated under refiux with potassium acetate in monodeutercethanol. This treatment gave the acetoxy ketone IV with simultanecus incorporation of two atoms of deuterium in the side-chain. Reduction of IV in situ with sodium borodeuteride, followed by alkaline hydrolysis, afforded the trideuterated glycol derivative V. Acetylation of V and subsequent removal of the benzyl protecting group yielded $\left[{ }^{2} \mathrm{H}_{3}\right] \mathrm{MHPG}$ diacetate (VII), which was converted to the corresponding sulphate conjugate VIII as described by Mumma [29]. This compound was purified as its potassium salt by chromatography on Sephadex LFi-20 [30] and finally hydrolysed under alkaine conditions to give $\left[{ }^{2} \mathrm{H}_{3}\right] \mathrm{MHPG}$ sulphate (IX).

Fiz. I. Synthesis of [$\mathrm{H}_{\mathrm{s}} \mathrm{M}$ MPG sulphste.

MS analysis of compounds V and EX the latter following trifluoroacetylation) indicated that the deuterium atoms had been completely retained during the latter stages of the synthesis.

Analysis of urinary MFPPG sulphate

Iri the first stage of the assay procedure, a known amount of the labelled internal standard, $\left.{ }^{[}{ }^{2} \mathrm{H}_{3}\right]$ MHPG sulphzte, is added to a 5 mf aliquot of a $24-\mathrm{h}$ wine collection. Free MHPG and its conjugates are then extracted from urine by chromatography on a small column of Amberlite XAD-2. MHPG sulphate is only partially retained on the resin, and, although overall recoveries from the column are poor (yield approximately 30%), this has not proved to be a serious drawback in the analysis.

MHPG sulphate is next separated from its free and glucuronide-conjugated forms by liquid-gel partition chromatography on a column of Sephadex LH-20. The use of this lipophilic gel with methanol-chloroform ($1: 1, v / v$) as the mobile phase has been widely employed for the isolation of steroid sulphates from lipid extracts of biolozical material [301. In this system, the presence or absence of a sulphate group determines chromatographic mobility and enables group separations to be carried out, based on conjugate class. Calibration of the LH-20 column with a sample of authentic MHPG sulphate indicated that this conjugate is strongly retained on the gel and is eluted slightly later than the majority of steroid monosulphates, which confims the relative insensitivity of the LH-20 system towards structural modifications in the lipophilic region of the molecule. In an experiment designed to establish the chromatographic behaviour of MEIPG glucuronide on LH-20, an XAD-2 extract of human urine was applied to a column containing 5 g of the gei and the column was eluted with methanol-chloroform ($1: 1, \mathrm{v} / \mathrm{V}, 0.01 \mathrm{M}$ with respect to sodium chloride). Fractions (10 mll) of the effluent were collected and each fraction was split into three equal parts and taken to ciryness. One aliquot was derivatized directly with trifuoracetic anhydride, while the other two aliquots were incubated with β-glucuronidase and aryisulphatase, respectively, prior to derivatization. The amount of MEPG tris-TFA formed in each case was determined by GC-MS and the results are summarized in Fig. 2. This shows that MEPPG giucuronide has an elution volume intermediate between those of free MFiPG and its sulphate conjugate and that the EH- 20 column fraction (between 70 and 100 ml of effluent) collected in the assay of MHPG sulphate will not contain any of the glucuronide.

In the final stage of the analytical procedure, MrfPG sulphate is converted to a derivative suitable for GC-MS analysis by reacior at room temperature with a mixture of trifluoroacetic anhydride and ethyl acetate. This mild treatment has been found to result in quantitative conversion of MHPG sulphate to the MKPG tris-TEA derivative in a single step. A similar type of reaction was obgerved when isoetharine suiphate [31] and isomeric dopamine sulphates [32] were treated with trimethylsilylating reagents, and when a number of steroid sulphates were rescted with heptefluorobutyric anhydride in benzene [331; in each case, the sulphate ester is cisplaced and a derivative of the resulting alco-
TABLE I
VALUES FOR THE EXCRETION OF FREE MHPG, MHPG SULPHATE AND TOTAL MHPG (FREE + CONJUGATRD) IN 24.H URINE COLLECTIONS FROM HEALITHY VOLUNTEEERS

Subjects	Age (years)	mg Mripg/ $/ 24 \mathrm{~h}$			mg MHPG/g creatinime		
		Free	Sulphate*	Total ${ }^{\text {a }}$	Free	Sulphate*	Total ${ }^{\text {a }}$
Males							
ARB	28	0.10	1.67	8.11	0.06	0.89	1.76
蚛	28	0.04	0.55	1.54	0.08	0.43	1.20
CD	31	0.06	1.05	2.61	0.04	0.78	1.77
H	29	0.07	0.89	1.82	0.04	0.60	1.03
S3	23	0.09	1.19	2.36	0.05	0.88	1.84
SM	28	0.14	1.65	.4.21	0.07	0.81	2.20
盛	32	0.09	1.35	2.83	0.04	0.68	1.98
Namolea							
CH	29	0.11	1.12	2.42	0.09	0.94	2.03
BN	23	0.05	0.65	1.25	0.05	0.52	1.18
RI	33	0.08	0.65	2.26	0.06	0.49	1.71
Mean		0.08	1.05	2.43	0.05	0.87	1.50
+ 8.1.		± 0.03	± 0.98	± 0.84	± 0.02	± 0.18	± 0.39

4 Values asxpressed in ferma of free MHPG present in conjugated form.

Fig. 2. Chromatographis mparation of free MEHPG (fr. 3), K\&PG glucuronide (fr. 5) and EfIFP sulpiate (fr. S-10) um Scphadea Lit-20 (mobile phase: methanol-chlarotorm, i:i, v/f; 0.01 et in NaCl) froms an extract of urine. The amount of MHPG in eache fraction was deteminec by GC-ifS, (A) following cirect deriyatizetion with trifluoroacetic enhydride-
 derivatization and (C) after incubation with aryl suiphatase fontaining griucuronidasa activity \rangle, extraction into ethyl acetate and derivatization.

Fig. 3. Selected ion recordings obtsineà from a urinary extract of MHPC sulphate; m/e 358. MHFG tris-TFA derivative; mfe 360 , internal standard. The concenteation of MFPG sulphate in this sampla
hol is formed. Although we have zot investigated the general applicability of this reaction, it would appear to pzovide an atiractive altemative to the use of sulphatases, particularly in cases where the conditions employed for acid hydrolysis result in destruction of the liberated alcohol. As is evident from Fig. 2, the glucuronide conjugate of MHPG is stable towards trifluoroacetic anhydride and does not give rise to MHPG tris-TFA under the derivatization conditions employed.

Quantification of endogenous MHPG sulphate is based on ratios of peak heights in the selected ion records for m/e 358 (unlsbelled MHPG derivative) and mfe 380 (intemal standard) (Fig. 3). These iragments correspond to loss from the molecular ions of the elements of tifinoroacetic acid and monc-deutero-triflioroacetic acid, respectively [28] Monitoring of the molecular ions, at m/e s 72 and 475 , may also be used for quanitative messurements, although monitoring of these masses gives a lower response per unit mass of sample injected.

In a study of the precision of the analytical procedure, the concentration of MHPG sulphate was determined in five 5 -ml aliquots of a 24 -h unine collection, when each semple was analysed twice by GC-MS. The mean value obtained was $0.70 \mu \mathrm{~g} / \mathrm{ml}$, with a standard deviation of $\pm 2 \%$.

Leveis of MHPG sulphate in 24-h urine collections from ten healthy volunteers are given in Table E. For comparison, corsesponding values for free and "total" MHPG, the latter obtained using a conventional enzymic hydrolysis, are also shown. Mean figures for the excretion of MHPG sulphate and of free and "total" MFPPG in these subjects were found to fall within the range reported by other authors [3, 4, 16], although it should be noted that literature values for the excretion of these compounds vary widely.

Application of the present method to studies of the effect of antihypertensive drugs on the tumover of noradrenaline in the central and peripheral nervous system is currently in progress.

ACKNOWEEDGEMENETS

We would like to thank Dr. M. Gzelke for access to IR and NRR facilities and Dr. A.R. Boobis for valuable discussions. This work was supported by a grant from the Medical Research Council.

REFERENCES

[^0]J. Axelrod. L.J. Kopin and J.D. Mann, Biachim. Biophys. Acte, 36 (1959) 576.

17 E.K. Gordon, J. Olizer, K. Black and Ed. Kopin, Biocheas. Medi., I1 (1974) 32.
18 B. Siöquist, B. Eincatrom anc E. Angrart, d. Chromatogro, 105 (1975) 009.
IG C.G. Swahn, B. Sandgärde, E.-A. Fiesel and G. Sedrall, Psychopharmacology, \&8 (i976) 147.

20 T.E. Gefineq, C.G. Hammar, B. Fobnstedt and R.E. McMahon, Anal. Chem., 43 (E971)307.
21 E.R. Martin, N.C. Timmons and A. J. Prange, Jr., Clin. Chim. Acta, 38 (E972)271.
22 E.E. Yȩ, E.H. Eandis and J. W. Maas, Biocherm. Med., 14 (1975) 411.
23 E.K. Gordors, E. Oliver and E.J. Kopin, Eife Sci., 16 (1975) 1527.
24 EA. Axclsom and J. Sjorall, J. Chromatogr., 126 (1976 : 705.
25 H.E. Bradlow, Steroids, If (1968) 265.
26 B. Hegedus, Helv. Chim. Acta, 46 (1963) 2604.
27 S. Murray, B.H. Jones, D.S. Daries, C.T. Doliery and d.E. Reid, Ciin Chim. Acta, (1977) in press.
28 L. Bertieson, ل. Caromatogr., 87 (1973) 147.
29 R.O. Mumma, Lipids, 1 (1966) 221.
30 E. Siōrall and R. Vinko, Acta. Chent. Scand., 20 (1966) 1419.
31 E.M. Wuliams R.E. Briant, C.T. Dollery and D.S. Davies, Xenobiotica, 4 (197\&) 345.
32 R.L. Bronaugh, S.E. Hsttox, M.M. Hoehn, R.C. Murphy and C.O. Rutledge, I. Phantr. Exp. Ther., 195 (1975) 445.
33 J.C. Touchstone and M.F. Bobbins, J. Steroid Biochen., 6 (1975) 1389.

[^0]: R.M. Post, F.K. Gaodwin, E. Gordon and D.S. Watkin, Science, 179 (1973) 897 .
 H. Shimizu and E.H. LoRrosse, Siochem. Pharmacol., 18 (1989) 1643.
 P.A. Bond and D.R. Howlett, Biochem. Med., 10 (1974) 219.
 C.R.d. Ruthven andi R. Sandler, Clin. Chim. Acta, 12 (1965) 816.
 Z. Kahare, f.FI. Morrat and P. Ventergand, Clin. Caim. Acta, 30 (1970)633.

 Z. Speiser and M. Weirstock, Pharmacol. Biochem. Eohar., 4 (1978) 531.
 S. Wik, S.E. Gitiown D.D. Claria and D.H. Paiey, Clin. Cain. Acta, 16 (1967) 409.

 10 F. Raroum, C.O. Anah, C.F. RuEhven and K. Sandler, Clin. Cinim. Acta, 24 (1969) 341.

 11 H. Delimenjiat and JW, Masas, Anat, Biochem. 35 (1970) 113 .

 13 F. OKeeffe and B. W. Leookshan, Clin. Chem, 19(1978)1081:
 14 E. Fellows, P. Riecerer and In Sandier, Clin. Chim. Actis, 59 (197E) 255.
 15 . K. Cagnasio and P.A. Biondi, Asil. Eiochem, 71 (1976)597.
 *6. F. Karoum, H. Leftyre, L.B. Bizelow end E. Costr, Clin Cbim, Aeta, 48 (1973) 127

